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ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms
of visible data structures like trend and
seasonality. But it can capture a huge range of
time series patterns.
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Stationarity

Definition
If {yt} is a stationary time series, then for all s,
the distribution of (yt, . . . , yt+s) does not depend
on t.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationary?

gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2018) %>%
autoplot(Close) +
ylab("Google closing stock price ($US)")
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Stationary?

gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2018) %>%
autoplot(difference(Close)) +
ylab("Daily change in Google closing stock price")
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between
each observation in the original series.
Occasionally the differenced data will not
appear stationary and it may be necessary to
difference the data a second time.
In practice, it is almost never necessary to go
beyond second-order differences.
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Autoregressive models

Autoregressive (AR) models:
yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt,

where εt is white noise. This is a multiple
regression with lagged values of yt as
predictors.
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Cyclic behaviour is possible when p ≥ 2.
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Moving Average (MA) models

Moving Average (MA) models:

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q,

where εt is white noise. This is a multiple
regression with lagged errors as predictors.
Don’t confuse this with moving average
smoothing!
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ARIMA models

Autoregressive Moving Average models:
yt = c+ φ1yt−1 + · · ·+ φpyt−p

+ θ1εt−1 + · · ·+ θqεt−q + εt.

Predictors include both lagged values of
yt and lagged errors.

Autoregressive Integrated Moving
Average models

Combine ARMA model with differencing.
d-differenced series follows an ARMA model.
Need to choose p, d, q and whether or not to
include c.
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ARIMA models

ARIMA(p,d,q) model

AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no
constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)
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Example: National populations

fit <- global_economy %>%
model(arima = ARIMA(Population))

fit

## # A mable: 263 x 2
## # Key: Country [263]
## Country arima
## <fct> <model>
## 1 Afghanistan <ARIMA(4,2,1)>
## 2 Albania <ARIMA(0,2,2)>
## 3 Algeria <ARIMA(2,2,2)>
## 4 American Samoa <ARIMA(2,2,2)>
## 5 Andorra <ARIMA(2,1,2) w/ drift>
## 6 Angola <ARIMA(4,2,1)>
## 7 Antigua and Barbuda <ARIMA(2,1,2) w/ drift>
## 8 Arab World <ARIMA(0,2,1)>
## 9 Argentina <ARIMA(2,2,2)>
## 10 Armenia <ARIMA(3,2,0)>
## # ... with 253 more rows
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Example: National populations

fit %>%
filter(Country == "Australia") %>%
report()

## Series: Population
## Model: ARIMA(0,2,1)
##
## Coefficients:
## ma1
## -0.661
## s.e. 0.107
##
## sigma^2 estimated as 4.063e+09: log likelihood=-699
## AIC=1401 AICc=1402 BIC=1405

14



Example: National populations

fit %>%
filter(Country == "Australia") %>%
report()

## Series: Population
## Model: ARIMA(0,2,1)
##
## Coefficients:
## ma1
## -0.661
## s.e. 0.107
##
## sigma^2 estimated as 4.063e+09: log likelihood=-699
## AIC=1401 AICc=1402 BIC=1405

14

yt = 2yt−1 − yt−2 − 0.7εt−1 + εt
εt ∼ NID(0,4× 109)



Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts
will go to zero.
If c = 0 and d = 1, the long-term forecasts
will go to a non-zero constant.
If c = 0 and d = 2, the long-term forecasts
will follow a straight line.
If c 6= 0 and d = 0, the long-term forecasts
will go to the mean of the data.
If c 6= 0 and d = 1, the long-term forecasts
will follow a straight line.
If c 6= 0 and d = 2, the long-term forecasts
will follow a quadratic trend.
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Understanding ARIMA models

Forecast variance and d
The higher the value of d, the more rapidly
the prediction intervals increase in size.
For d = 0, the long-term forecast standard
deviation will go to the standard deviation of
the historical data.
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Example: National populations

fit %>%
forecast(h = 10) %>%
filter(Country == "Australia") %>%
autoplot(global_economy)
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How does ARIMA() work?

Hyndman and Khandakar (JSS, 2008)
algorithm:

Select no. differences d via KPSS test.
Select p, q and inclusion of c by minimising
AICc.
Use stepwise search to traverse model
space.

AICc = −2 log(L)+2(p+q+k+1)

1 +
(p+ q+ k + 2)

T − p− q− k − 2

 .
where L is the maximised likelihood fitted to the
differenced data, k = 1 if c 6= 0 and k = 0
otherwise.

Note: Can’t compare AICc for different values of
d.
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How does ARIMA() work?

Step1: Select current model (with smallest AICc)
from:
ARIMA(2,d,2)
ARIMA(0,d,0)
ARIMA(1,d,0)
ARIMA(0,d,1)

Step 2: Consider variations of current model:
vary one of p,q, from current model by
±1;
p,q both vary from current model by
±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.
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Lab Session 16

For the United States GDP data (from
global_economy):

Fit a suitable ARIMA model for the logged
data.
Produce forecasts of your fitted model. Do
the forecasts look reasonable?
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Electricity production

usmelec %>% autoplot(
Generation

)
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Electricity production

usmelec %>% autoplot(
log(Generation)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12)

)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12) %>% difference()

)

−0.15

−0.10

−0.05

0.00

0.05

0.10

1980 Jan 1990 Jan 2000 Jan 2010 Jan
Month [1M]lo

g(
G

en
er

at
io

n)
 %

>
%

 d
iff

er
en

ce
(1

2)
 %

>
%

 d
iff

er
en

ce
()

26



Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
report()

## Series: Generation
## Model: ARIMA(1,1,1)(2,1,1)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ma1 sar1 sar2 sma1
## 0.4116 -0.8483 0.0100 -0.1017 -0.8204
## s.e. 0.0617 0.0348 0.0561 0.0529 0.0357
##
## sigma^2 estimated as 0.0006841: log likelihood=1047
## AIC=-2082 AICc=-2082 BIC=-2057
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Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
forecast(h = "3 years") %>%
autoplot(usmelec)
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Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
forecast(h = "3 years") %>%
autoplot(filter_index(usmelec, "2005" ~ .))
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Seasonal ARIMA models

ARIMA (p,d,q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

m = number of observations per year.
d first differences, D seasonal differences
p AR lags, q MA lags
P seasonal AR lags, Q seasonal MA lags

Seasonal and non-seasonal terms combine
multiplicatively
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Common ARIMA models

The US Census Bureau uses the following models
most often:

ARIMA(0,1,1)(0,1,1)m with log transformation
ARIMA(0,1,2)(0,1,1)m with log transformation
ARIMA(2,1,0)(0,1,1)m with log transformation
ARIMA(0,2,2)(0,1,1)m with log transformation
ARIMA(2,1,2)(0,1,1)m with no transformation
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Cortecosteroid drug sales

h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost))

h02 %>% autoplot(Cost) +
xlab("Year") + ylab("") +
ggtitle("Cortecosteroid drug scripts")
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Cortecosteroid drug sales

h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost))

h02 %>% autoplot(log(Cost)) +
xlab("Year") + ylab("") +
ggtitle("Log Cortecosteroid drug scripts")
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Cortecosteroid drug sales

fit <- h02 %>%
model(auto = ARIMA(log(Cost)))

report(fit)

## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ar2 sma1
## -0.8491 -0.4207 -0.6401
## s.e. 0.0712 0.0714 0.0694
##
## sigma^2 estimated as 0.004399: log likelihood=245
## AIC=-483 AICc=-483 BIC=-470
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Cortecosteroid drug sales

fit <- h02 %>%
model(best = ARIMA(log(Cost),
stepwise = FALSE,
approximation = FALSE,
order_constraint = p + q + P + Q <= 9

))
report(fit)

## Series: Cost
## Model: ARIMA(4,1,1)(2,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1 sar1 sar2
## -0.0426 0.210 0.202 -0.227 -0.742 0.621 -0.383
## s.e. 0.2167 0.181 0.114 0.081 0.207 0.242 0.118
## sma1 sma2
## -1.202 0.496
## s.e. 0.249 0.214
##
## sigma^2 estimated as 0.004061: log likelihood=254
## AIC=-489 AICc=-487 BIC=-456 35



Cortecosteroid drug sales

fit %>%
forecast() %>%
autoplot(h02) +
ylab("H02 Expenditure ($AUD)") + xlab("Year")
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Lab Session 17

For the Australian tourism data (from tourism):

Fit a suitable ARIMA model for all data.
Produce forecasts of your fitted models.
Check the forecasts for the “Snowy
Mountains” and “Melbourne” regions. Do
they look reasonable?
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Forecast ensembles

train <- tourism %>%
filter(year(Quarter) <= 2014)

fit <- train %>%
model(
ets = ETS(Trips),
arima = ARIMA(Trips),
snaive = SNAIVE(Trips)

) %>%
mutate(mixed = (ets + arima + snaive) / 3)

Ensemble forecast mixed is a simple average of
the three fitted models.
forecast() will produce distributional forecasts
taking into account the correlations between the
forecast errors of the component models.
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Forecast ensembles

fc <- fit %>% forecast(h = "3 years")
fc %>% filter(Region == "Snowy Mountains") %>%

autoplot(tourism, level = NULL)
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Forecast ensembles

accuracy(fc, tourism) %>%
group_by(.model) %>%
summarise(

RMSE = mean(RMSE),
MAE = mean(MAE),
MASE = mean(MASE)

) %>%
arrange(RMSE)

## # A tibble: 4 x 4
## .model RMSE MAE MASE
## <chr> <dbl> <dbl> <dbl>
## 1 mixed 19.8 16.0 0.997
## 2 ets 20.2 16.4 1.00
## 3 snaive 21.5 17.3 1.17
## 4 arima 21.9 17.8 1.07
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Forecast ensembles

Can we do better than equal weights?

Hard to find weights that improve forecast
accuracy.
Known as the “forecast combination puzzle”.
Solution: FFORMA

FFORMA (Feature-based FORecast Model
Averaging)

Vector of time series features used to predict
best weights.

A modification of xgboost is used.

Method came 2nd in the 2018 M4 international
forecasting competition.

Main author: Pablo Montero-Manso (Monash U)

Not (yet) available for fable.
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