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An ARIMA model is rarely interpretable in terms
of visible data structures like trend and

seasonality. But it can capture a huge range of
time series patterns.
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Stationarity

If {y+} is a stationary time series, then for all s,
the distribution of (yt, ..., Yt s) does not depend
ont.

A stationary series is:

m roughly horizontal

m constant variance
m no patterns predictable in the long-term



Stationary?

gafa_stock %>%
filter (Symbol == "GOOG'", year(Date) == 2018) %>%
autoplot(Close) +
ylab ("Google closing stock price (SUS)")
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Stationary?

gafa_stock %>%
filter (Symbol == "GOOG'", year(Date) == 2018) %>%
autoplot(difference(Close)) +
ylab("Daily change in Google closing stock price'")
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Differencing

m Differencing helps to stabilize the mean.

m The differenced series is the change between
each observation in the original series.

m Occasionally the differenced data will not
appear stationary and it may be necessary to
difference the data a second time.

m In practice, it is almost never necessary to go
beyond second-order differences.



Autoregressive models

Autoregressive (AR) models:

Yi =C+ Q1Yi—1+ QY2 + -+ QpYi_p + Et,
where ¢; is white noise. This is a multiple
regression with lagged values of y; as

predictors.
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Moving Average (MA) models

Yt =CH et + Oree—1 + Ot + - - - + Ogt—g,
where ¢ is white noise. This is a multiple
regression with lagged errors as predictors.
Don’t confuse this with moving average
smoothing!
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ARIMA models

Autoregressive Moving Average models:
Yt =C+ ¢1¥e—1+ -+ dpYi—p
+ 01601 + - - - + Oget—g + ¢
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ARIMA models

Autoregressive Moving Average models:
Yt =C+ ¢1¥e—1+ -+ dpYi—p
+ O16¢-1 + -+ Hqé“t_q + E¢.

m Predictors include both lagged values of
y+ and lagged errors.
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ARIMA models

Autoregressive Moving Average models:
Yt =C+ ¢1¥e—1+ -+ dpYi—p
+ 915t—1 — e o9 o eqét_q + E¢.

m Predictors include both lagged values of
y+ and lagged errors.

Autoregressive Integrated Moving
Average models

m Combine ARMA model with differencing.

m d-differenced series follows an ARMA model.

m Need to choose p, d, g and whether or not to
include c. »



ARIMA models

ARIMA(p, d, g) model

AR: p = order of the autoregressive part
I: d = degree of first differencing involved
MA: q = order of the moving average part.

m White noise model: ARIMA(0,0,0)
m Random walk: ARIMA(O0,1,0) with no
constant
m Random walk with drift: ARIMA(O,1,0) with cons
m AR(p): ARIMA(p,0,0)
m MA(q): ARIMA(0,0,q9)



Example: National populations

fit <- global_economy %>%
model(arima = ARIMA(Population))

fit

## # A mable: 263 x 2

## # Key: Country [263]

## Country arima
## <fct> <model>
## 1 Afghanistan <ARIMA(4,2,1)>
## 2 Albania <ARIMA(0,2,2)>
## 3 Algeria <ARIMA(2,2,2)>
## 4 American Samoa <ARIMA(2,2,2)>
## 5 Andorra <ARIMA(2,1,2) w/ drift>
## 6 Angola <ARIMA(4,2,1)>
## 7 Antigua and Barbuda <ARIMA(2,1,2) w/ drift>
## 8 Arab World <ARIMA(0,2,1)>
## 9 Argentina <ARIMA(2,2,2)>

- H# 160 Armendia

<ARTMA(R 2 0O)>
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Example: National populations

fit %>%
filter (Country == "Australia") %>%
report()

## Series: Population
## Model: ARIMA(0,2,1)

Ht
## Coefficients:
## mal
H# -0.661
## s.e. 0.107
H#

## sigma’2 estimated as 4.063e+09: Tlog likelihood=-699
## AIC=1401 AICc=1402 BIC=1405
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Understanding ARIMA models

m Ifc=0andd =0, the long-term forecasts
will go to zero.

m Ifc=0andd =1, the long-term forecasts
will go to a non-zero constant.

m Ifc=0andd = 2, the long-term forecasts
will follow a straight line.

m Ifc # 0 and d = 0, the long-term forecasts
will go to the mean of the data.

m If c #0and d =1, the long-term forecasts
will follow a straight line.

m If c # 0 and d = 2, the long-term forecasts
will follow a quadratic trend.
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Understanding ARIMA models

Forecast variance and d

m The higher the value of d, the more rapidly
the prediction intervals increase in size.

m For d = 0, the long-term forecast standard
deviation will go to the standard deviation of
the historical data.



Example: National populations

fit %>%
forecast(h = 10) %>%
filter (Country == "Australia") %>%
autoplot(global_economy)
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How does ARIMA() work?

Hyndman and Khandakar (JSS, 2008)

algorithm:
m Select no. differences d via KPSS test.
m Select p, g and inclusion of ¢ by minimising
AlCc.
m Use stepwise search to traverse model
space.

18
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Hyndman and Khandakar (JSS, 2008)

algorithm:
m Select no. differences d via KPSS test.
m Select p, g and inclusion of ¢ by minimising

AlCc.
m Use stepwise search to traverse model
space.
(p+qg+k+2
AlICc = —2log(L)+2 k+1) |1 ‘
C og(L)+2(p+g+k+1) +T—p—q—k—

where L is the maximised likelihood fitted to the
differenced data, k =1ifc#0and k=0
otherwise.
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How does ARIMA() work?

Stepl: Select current model (with smallest AICc)
from:
ARIMA(
ARIMA(
ARIMA(
ARIMA(

)

2.d
0,d
1,d,
0,d

)
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How does ARIMA() work?

Stepl: Select current model (with smallest AICc)
from:
ARIMA(2,d, 2)
ARIMA(0,d, 0)
ARIMA(1,d, 0)
ARIMA(0,d, 1)
Step 2: Consider variations of current model:
m vary one of p, g, from current model by
+1;
m p, g both vary from current model by
+1;
m Include/exclude ¢ from current model.

Model with lowest AICc becomes current model.
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How does ARIMA() work?

Stepl: Select current model (with smallest AICc)
from:
ARIMA(2,d, 2)
ARIMA(0,d, 0)
ARIMA(1,d, 0)
ARIMA(0,d, 1)
Step 2: Consider variations of current model:
m vary one of p, g, from current model by
+1;
m p, g both vary from current model by
+1;
m Include/exclude ¢ from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AlICc can be found. 19
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Lab Session 16

For the United States GDP data (from
global_economy):

m Fit a suitable ARIMA model for the logged
data.

m Produce forecasts of your fitted model. Do
the forecasts look reasonable?

21



Seasonal ARIMA models
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Electricity production

usmelec %>% autoplot(
Generation
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Electricity production

usmelec %>% autoplot(

log (Generation)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12) %>% difference()
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Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
report()

## Series: Generation
## Model: ARIMA(1,1,1)(2,1,1)[12]
## Transformation: log(.x)

##

## Coefficients:

## arl mal sarl sar2 smal
## 0.4116 -0.8483 0.0100 -0.1017 -0.8204
## s.e. 0.0617 0.0348 0.0561 0.0529 0.0357
#i

## sigma’2 estimated as 0.0006841: Tlog likelihood=1047

## AIC=-2082 AICc=-2082 BIC=-2057
27



Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%

forecast(h = "3 years") %>%
autoplot(usmelec)
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Example: US electricity production

usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
forecast(h = "3 years") %>%
autoplot(filter_index(usmelec, "2005" ~ .))
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Seasonal ARIMA models

ARIMA (p,d,q) (P,D,Q)m
N———— N—————
T T
Non-seasonal part Seasonal part of
of the model of the model

m m = number of observations per year.

m d first differences, D seasonal differences
m p AR lags, g MA lags

m P seasonal AR lags, Q seasonal MA lags

Seasonal and non-seasonal terms combine

multiplicatively 30



Common ARIMA models

The US Census Bureau uses the following models
most often:

ARIMA(0,1,1)(0,1,1), with log transformation
ARIMA(0,1,2)(0,1,1), with log transformation
ARIMA(2,1,0)(0,1,1),, with log transformation
ARIMA(O0,2,2)(0,1,1), with log transformation
ARIMA(2,1,2)(0,1,1),, with no transformation

31



Cortecosteroid drug sales

he2 <- PBS %>%
filter (ATC2 == "HO2") %>%
summarise(Cost = sum(Cost))

he2 %>% autoplot(Cost) +
xlab("Year") + ylab("") +
ggtitle("Cortecosteroid drug scripts")
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Cortecosteroid drug sales

he2 <- PBS %>%
filter (ATC2 == "HO2") %>%
summarise(Cost = sum(Cost))
ho2 %>% autoplot(log(Cost)) +
xlab("Year") + ylab("") +
ggtitle("Log Cortecosteroid drug scripts")

Log Cortecosteroid drug scripts
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Cortecosteroid drug sales

fit <- h02 %>%
model(auto =
report(fit)

ARIMA (log(Cost)))

## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(.x)

##

## Coefficients:

## arl ar2 smal
#i -0.8491 -0.4207 -0.6401
## s.e. 0.0712 0.0714 0.0694
##

## sigma”2 estimated as 0.004399: Tlog likelihood=245
## AIC=-483 AICc=-483 BIC=-470

34



Cortecosteroid drug sales

£

re

##
##
##
##
##
##
##
##
##
##
##
##
##
##

t <= hO2 %>%

model(best = ARIMA(log(Cost),

stepwise = FALSE,

approximation = FALSE,
order_constraint = p + g + P + Q <= 9

)
port(fit)

Series: Cost

X)

ar3

0.202 -0.

Model: ARIMA(4,1,1)(2,1,2)[12]
Transformation: log(.
Coefficients:
arl ar2
-0.0426 0.210
s.e. 0.2167 0.181

smal sma2
-1.202 0.496
s.e. 0.249 0.214

sigma’2 estimated as
AIC=-489 AICc=-487

0.114 0.

0.004061:
BIC=-456

ar4 mal sarl
227 -0.742 0.621
081 0.207 0.242

log likelihood=254

sar2
-0.383
0.118
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Cortecosteroid drug sales

fit %>%
forecast() %>%
autoplot(ho2) +
ylab("HO2 Expenditure ($AUD)") + xlab("Year'")
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Lab Session 17

For the Australian tourism data (from tourism):

m Fit a suitable ARIMA model for all data.

m Produce forecasts of your fitted models.

m Check the forecasts for the “Snowy
Mountains” and “Melbourne” regions. Do
they look reasonable?

38
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Forecast ensembles

train <- tourism %>%
filter (year (Quarter) <= 2014)
fit <- train %>%
model (
ets = ETS(Trips),
arima = ARIMA(Trips),
snaive = SNAIVE(Trips)
) %>%

mutate(mixed = (ets + arima + snaive) / 3)

m Ensemble forecast mixed is a simple average of
the three fitted models.

m forecast() will produce distributional forecasts
taking into account the correlations between the
forecast errors of the component models.

40



Forecast ensembles

fc <- fit %>% forecast(h = "3 years")
fc %>% filter(Region == "Snowy Mountains") %>%
autoplot(tourism, level = NULL)
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Forecast ensembles

accuracy(fc, tourism) %>%
group_by (.model) %>%
summarise (
RMSE = mean(RMSE),
MAE = mean(MAE),
MASE = mean (MASE)
%>%

arrange (RMSE)

## # A tibble: 4 x 4
## .model RMSE MAE MASE
#4 <chr> <dbl> <dbl> <dbl>

## 1 mixed 19.8 16.0 0.997
## 2 ets 20.2 16.4 1.00
## 3 snaive 21.5 17.3 1.17
## 4 arima 21.9 17.8 1.07

42



Forecast ensembles
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Forecast ensembles

m Hard to find weights that improve forecast
accuracy.

m Known as the “forecast combination puzzle”.

m Solution: FFORMA

43



Forecast ensembles

Can we do better than equal weights?
m Hard to find weights that improve forecast
accuracy.

m Known as the “forecast combination puzzle”.
m Solution: FFORMA

FFORMA (Feature-based FORecast Model
Averaging)

m Vector of time series features used to predict
best weights.

m A modification of xgboost is used.

m Method came 2nd in the 2018 M4 international
forecasting competition.

m Main author: Pablo Montero-Manso (Monash U) 43
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